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Abstract— Internet advertising is a new and exciting area
where feedback control has proven tremendously valuable
and is expected to play an increasingly important role as
the industry continues its rapid growth. The objective of
algorithms in a display advertising network is to create value
for advertisers, publishers, and the network owner, via optimal
decisions on where, when, how, and to whom to show ads.
Feedback controllers provide a system that learns from its
mistakes and takes proper reactive and proactive actions to
meet goals set by advertisers. This paper is a brief tutorial to
the field with control engineers as the intended audience.

I. INTRODUCTION

Online advertising is a form of promotion that uses the
Internet and World Wide Web to deliver marketing messages
to attract customers. Examples of online advertising include
banner ads, contextual ads on search engine results pages,
rich media ads, and so forth.

Online advertising may not sound like an industry with
problem statements relevant to feedback control, but there
are plenty of interesting and challenging feedback control
problems, and the control systems used in online advertising
are also often mission critical components that drive multi-
billion dollar businesses. Moreover the industry is expected
to continue growing rapidly for years.

Advertising in traditional media such as printed magazines
is different in many ways from advertising online, but the
fundamental problems facing the advertising professional are
the same. According to John Wanamaker (1838-1922), the
owner of the first department store in the United States: “Half
the money I spend on advertising is wasted; the trouble is I
don’t know which half.” Ultimately, all advertising is about
showing the right ad to the right consumer at the right time.
The difference between traditional and online advertising
is that the data available to make fact-based decisions and
the immediate publishing of information and content on
Internet is not limited by geography or time. Carefully
establishing objective functions, defining measurement and
control signals, and designing a system with sufficiently
high sampling rate and short delays results in tractable (yet
challenging) feedback control problems.

Here we introduce control engineers to problem state-
ments, challenges, and a primitive feedback control solution
in the area of online advertising. Limited space allows us
only to scratch the surface of this interesting new field.
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In the context of a so-called display advertising network
there are Internet users, publishers and advertisers plus an
ad network optimization engine.

Publishers own web pages receiving traffic from Internet
users. The traffic is monetized by selling advertisement space
to advertisers or networks. The advertisement space is typi-
cally sold in the form of impressions, where an impression
is one view of an ad. In addition to monetizing impression
inventory, publishers want to protect their brand image and
do not want to annoy site visitors. Hence, they are sensitive
about what type of ads are shown on their web pages.

Although the objectives of advertisers vary, the common
goal is to find the right internet users for developing brands,
increasing sales, reducing ad expenditure, and spending ad
budgets smoothly.

The network owner wants to maximize the network profit
while meeting objectives for both advertisers and publish-
ers. This is accomplished by purchasing impressions from
the publisher at relatively low costs, and selling them to
advertisers in a network of many publishers and Internet
users. The optimization engines provides efficient audience
targeting and ad allocation, and increases ROIs (return of
investments) for both publishers and advertisers.

A contract between a network and a publisher, or between
a network and an advertiser involves payment models, and
the most common types of payment model are CPM, CPC,
and CPA. CPM stands for cost per thousand impressions,
CPC stands for cost per click, and CPA stands for cost per
acquisition. CPC and CPA are also called performance-based
pricing. CPA is different from CPC in that the actions are
more closely associated with purchasing behaviors. If the
contract between the network and a specific advertiser is a
$20 CPA, the advertiser pays nothing if an Internet user only
views or clicks on the ad, but pays $20 for each conversion
that takes place.

Often publishers or advertisers define allowability con-
straints. One such constraint is when a publisher does not
want a competitor’s ad to be shown on their web pages; or
when an advertiser only wants their ads to be shown to users
of a specific gender or age, or from particular geographic
locations. Another common advertiser constraint is called
frequency cap, where an ad is allowed to be shown to the
same user at most a certain number of times per day.

The paper is organized as follows. Section II provides a
brief history of optimization in display advertising. Some
common feedback control problems encountered in dis-
play advertising are introduced in Section III. Section IV
discusses some of the important challenges that must be
considered in order to solve the control problems. In Sec-



tion V we provides a simplified problem statement, and a
primitive solution to one of the control problems is derived in
Section VI. Finally Section VII provides some experimental
results.

II. DISPLAY ADVERTISING 1998 – 2012

The first banner display ad on Internet is believed to have
appeared in or around 1994, but it was not until several years
later that solutions aimed at optimizing online advertising in
an automated fashion came about. One of the successful early
players in this space was TeknoSurf, which was founded
in 1998. It was later renamed to Advertising.com, and
eventually acquired by AOL.

TeknoSurf launched the so-called AdLearn system, which
is an optimization engine configured to maximize some
business objective function subject to various advertiser and
publisher constraints and given historical information on
impressions and user engagement.

A. The Beginning of Optimization

The first few versions of AdLearn were developed by solv-
ing a Linear Program problem [1], [2]. Indeed, the payment
models, campaign objectives, and available measurement
data back then allowed for this approach by utilizing the
certainty equivalence principle (see Figure 1). The approach

Fig. 1. Block diagram of the old centralized system for display advertising
optimization.

was to linearize the optimization problem by implementing
a stand-alone prediction system for all relevant stochastic
quantities. The dimensionality of the optimization problem
was thereafter reduced via various approximations. Next the
resulting system was solved using a centralized Linear Pro-
gram solver. The business was successful and grew rapidly;
however, it was all possible because of a modest dimension
of the problem (effectively, the number of publishers times
the number of advertisers times the number of audience
groups).

Over time, however, the initially adopted approach began
to break down. First, as the network grew the dimension
of the problem became a major challenge computation-
ally. Moreover, the industry evolved towards more complex
advertising constraints that did not fit well in the linear
programming framework. Effectively, an increasing number
of non-linear stochastic and difficult-to-estimate quantities
entered into the problem statement, making it increasingly
hard to solve. Before giving up on the Linear Program
approach, a range of approximations and ad hoc mechanisms
had to be implemented to handle the new challenges

The centralized optimization paradigm did not scale well
enough and the various ad hoc approximations compromised
the optimization results. Furthermore, imperfect predictions
led to frequent violations of campaign delivery constraints,
and the absence of a feedback mechanism meant that the
optimization system did not learn from its mistakes.

B. The Second Generation of Optimization

A paradigm shift was necessary. The most obvious re-
quirements to a new approach was that it must scale well
and have the ability of learning from its mistakes and handle
dynamic environments.

The approach chosen for a later version of AdLearn was
a decentralized feedback control system with the control
signals implemented as bids in an impression-based auction
exchange [3], [4], [5]. The new system is illustrated in
Figure 2. Each time an Internet user navigates to a web page

Fig. 2. Block diagram of the new decentralized system for display
advertising optimization.

that belongs to a publisher in the network, an impression
request is sent to the impression exchange of the network.
Within a few milliseconds a market clearing takes place
determining which ad to serve to the user. The bids used
for the market clearing are calculated every few minutes
by a separate campaign management system that contains
two core algorithm modules and one bid assembler. The
ad placement valuation recursively processes time series of
impressions, clicks, and conversions for each ad to estimate
the performance of the ad on various web pages and to
different users or user segments. The campaign controller
receives various campaign delivery constraints (see Sec-
tion III) and relevant feedback data to assess at what degree
the delivery constraints are met. The controller thereafter
issues appropriate bid adjustments to ensure the campaign
is delivered in the desirable manner

III. PROBLEM FORMULATION

Advertising network optimization involves e.g. impression
valuation, market clearing, and data transmission, but we
shall in this paper only consider what is referred to as
campaign management handled by “Campaign Controllers”
in Figure 2. This system adjusts the so-called Max Bids
based on reference and feedback data. The Max Bid is
calculated by the Ad Placement Valuation unit and represents
the effective CPM value of each impression. Reference data
captures any campaign delivery constraints and feedback
data contains any information needed to assess how well
the delivery constraints are met. The control signal may be
a multiplicative or additive bid adjustment to the Max Bids.



An ad campaign is a contract between an advertiser and
the network for the network owner to deliver an ad budget
according to an agreement. For example, the advertiser
may agree to pay the network $5 per conversion (for each
impression turning into a sale) over a four weeks time period
to a maximum amount of $100,000. In general the advertiser
also wants the pacing of the budget delivery to be even
throughout the flight of the campaign so that most of the
budget is not delivered at the beginning or end of the flight.
The contract may also stipulate additional constraints: The
advertiser may be interested only in showing ads to users in
a specific geographic location like a city or state, may not
want ads to be shown on weekends, or may not allow the
same user to be shown the same ad more than a prescribed
number of times per day.

Business requirements are often fuzzy and difficult to
translate into mathematical equations, but in this section
we outline the most common concrete campaign delivery
control problems. Many times a campaign is configured with
a combination of two or more delivery objectives.

A. Branding vs Performance

Broadly speaking an ad campaign is categorized as a
branding and/or performance campaign. The objective of
a branding campaign is to reach many users without nec-
essarily selling a product in the near future. A branding
campaign is typically set up via a CPM payment model since
conversions are less important than simply showing ads.

The objective of a performance campaign is to show ads
to users that are most likely to click or convert. A pure
performance campaign is set up via a CPC or CPA payment
model so that the advertiser does not pay for impressions
that did not result in some form of engagement.

B. Smoothness Control

The smoothness objective is typically considered as the
primary objective among all the possible objectives. Simply,
if a campaign is assigned with the smoothness objective,
then its daily delivery should match the pre-defined daily
reference and bursts and dark hours should be avoided.
Smoothness is applicable to both branding and performance
campaigns, but it is more challenging for performance cam-
paigns because of system properties that are discussed in
Section IV.

C. Backend Performance Control

The backend performance goal is another important con-
trol objective, and is typically considered secondary in the
sense that it may be violated if satisfying the primary
objective requires that. A common set-up is for the primary
objective to be CPM smoothness (the network is paid per
impression), with a secondary performance model defined
as maximum cost equivalence per click or conversion should
be less than a pre-defined threshold. This ensures at least a
certain ratio of the impressions should turn into clicks or
conversions.

D. Partition Control

Partition control has gained interest among some adver-
tisers in recent years. A campaign may consist of multiple
ad creatives, where each creative is tailored to a certain
user group. For example, different ads may be designed
for male and female customers, or for different geographic
regions. For a campaign with a partition objective its medias
are divided into partition groups. The deliveries from these
partitions should be maintained close to some pre-defined
ratios, such as 50/50 between male and female, or 10% to
people in California and 90% to people elsewhere.

IV. MODELING

Let us consider some properties of an ad network rele-
vant for designing a feedback control system. No two ad
campaigns are identical, so we opt to present the modeling
qualitatively rather than quantitatively.

First, the relevant aspects of the network are those that in-
fluence the input-output relationship of the plant as perceived
by an individual ad campaign. This relationship is defined by
the mapping from ’bid adjustment’ to ’actual advertisement
result’ in Figure 2.

The most obvious aspect of the plant is the time variability.
The presence of people online is highly dependent on time.
We expect a significant seasonal time-of-day pattern, but
also a day-of-week pattern, and so forth [6]. These seasonal
patterns together with traffic trends and spikes are reflected in
a campaign’s time series of impression, click, and conversion
data. Figure 3 provides an example of impression volume

Fig. 3. Example of impression volume over time for a real campaign.
Notice the distinct time-of-day pattern, but also the variability of volume
variance.

over time for a real campaign. Notice the distinct time-
of-day pattern, but also the variability of volume variance.
This shows that the impression volume cannot be described
by a linear time-invariant system driven by white noise.
Instead. a better representation is likely a periodic log-
Normal model [7], [8].

For a performance campaign it is of significance that
only one click or conversion per thousand or million of
impressions occurs. This means that even for moderately
large impression volumes, it is dangerous to make use of
popular approximations based on the Central Limit Theorem
in statistics [9], [10]. Indeed, the conversion volume would
not demonstrate a symmetric and Gaussian-like pattern even
if the impression volume is steady. A better representation
is to assume conversions are the result of a Binomial
experiment with the impression volume and the unknown
conversion probability as input arguments. However, even



this is an approximation since it assumes each impression is
an independent Bernoulli experiment, which is not the case.

Next, latency, which is the time between when an im-
pression is served to a user and the user converts (e.g.
makes a purchase), varies dramatically from one ad campaign
to another and makes campaign control a challenge. In
particular, since both conversion probability and latency
distribution are unknown properties of a campaign and
must be estimated based on historical data, it is tricky to
determine how to pace a performance campaign initially. If a
constant number of impressions are shown every hour and we
observe the resulting time series of conversions, we face the
problem initially of not knowing whether the observed level
of conversion volume is representative for the impression
volume or if more conversions are to be expected later from
the already served impressions. Figure 4 shows simulated
data to explain the described dilemma. It is intuitive that

Fig. 4. Simulated data for observed impression and conversion data to
illustrate the impact of latency.

some campaigns may have a long latency. For example, if
a car maker is running a performance campaign we do not
expect users to convert immediately. Clearly, most people
considering to buy cars online would spend extensive time
assessing their financial situations and purchase options.

Figure 5 gives two examples of real latency data. The top
plot is a normalized histogram of latencies from a campaign
where most conversions took place within one or a few
hours after the corresponding impression. The bottom plot
shows a normalized histogram of latencies for a long latency
campaign. Super-imposed on the histograms are maximum-
likelihood fitted Gamma probability density functions. The
Gamma distribution is a versatile two-parametric function
that is proven to describe the dominant shape of latency data
well. But as can be seen for the long latency campaign, there
is a 24 hour-periodicity that is not captured by the Gamma
model. Capturing this aspect of the latency behavior would
require additional parameters in the model.

By design, each campaign should be controlled by an
independent control system. The purpose is to ensure a
scalable system, but another reason is that an advertiser
for various reasons may not want collaboration with others.

Figure 6 shows one example of the so-called price-volume
relationship. The curve shows how many impressions the
campaign can win as the price increases, and is produced
by determining the clearing price for all impressions the
campaign is interested in. Clearly, the volume is a non-
decreasing function of the price, but more interestingly, its
slopes may differ dramatically at different price points. Small
changes in bid price may result in significant increases in
awarded impressions. The slope of the price-volume curve
is referred to as the plant gain and influences the speed and
robustness of the closed-loop system.

Another thing worthy of noting is that independent control
does not mean the campaigns are de-coupled. Since all
campaigns submit bids into just one impression market place
competing for the same impressions, there is by neces-
sity a strong coupling among campaigns. The competitive
environment (price-volume curve) for a campaign changes
when competing campaigns entering or leaving the network,
or simply changing their bids. This means the campaign
controllers must be robust and adaptive.

V. EXAMPLE PROBLEM

Due to space limit, we only discuss smoothness control of
CPA campaigns with highly simplified models.

A. Key Notations

Suppose the system sampling time in one hour.

k : Current time
` : Dummy variable for time

u(`) : Control signal effective during [`, `+ 1)

nI(`) : Impression volume sourced to [`, `+ 1)

nA(`) : Conversion volume sourced to [`, `+ 1)

nA(`, k) : Conversion volume sourced to [`, `+ 1)

and reported before time k
p(`) : Conversion rate during [`, `+ 1)

ndaily,refA : Daily delivery goal for conversions

Fig. 5. Examples of real latency data together with maximum-likelihood
fitted Gamma probability density functions. Top: short-latency campaign.
Bottom: long-latency campaign.



Fig. 6. Example of price-volume curve. It indicates how many impressions
a campaign would have been awarded for different bid prices at a given time.

B. Simplified Plant Model

The principle relationship between nI(k) and u(k) can be
described by the following model:

nI(k) = u(k) [β0 + β1 sin (2πk/24 + ϕ1)] eε(k) (1)

where ε(k) is a stationary, stable and zero-mean stochastic
process, and β0, β1 and ϕ1 are unknown model parameters
which differ from campaign to campaign.

The relationship between nA(k) and nI(k) can be cap-
tured with a Binomial model:

nA(k) ∼ Binomial (nI(k), p(k)) (2)

Typically, p(k) is in the range of [10−4, 10−6], and some
campaigns have strong time-of-day patterns in p(k).

In this paper, we assume there is no delay for reporting
impressions, and model the latency for reporting conversions,
δ, by a Gamma distribution with parameters α and β:

δ ∼ Gamma (α, β) (3)

C. Control Objective

The objective is to design a feedback control signal u(k)
for a CPA campaign such that its daily delivery tracks the
daily reference ndaily,refA ; i.e.,

lim
k→∞

`=k∑
`=k−23

nA(`) = ndaily,refA (4)

VI. EXAMPLE SOLUTION

The solution for the problem presented in Section V
involves the estimation algorithms for latency, conversion
rate and conversion volumes and the control algorithm for
calculating feedback control signal.

A. Latency Estimation

Given a time series of latency observations δ1, δ2, . . . , δt,
where δi denotes the time separation from an impression
to the conversion for conversion i and t denotes the most
recent conversion, we wish to estimate the latency probability
distribution model (see (3) and Figure 5).

The likelihood function for t independent and identically-
distributed Gamma random variables is

L(α, β) =

t∏
i=1

f(δi|α, β)

where

f(δi|α, β) =
1

βα
1

Γ(α)
δα−1i e−δi/β ,

and δi, α, β > 0. The maximum likelihood estimates for α
and β can be found by setting the derivatives of the above
likelihood function to zero. We obtain

ln (α)− ψ(α) = ln

(
1

t

t∑
i=1

δi

)
− 1

t

t∑
i=1

ln (δi) (5)

β =
1

αt

t∑
i=1

δi (6)

where ψ(α) = Γ′(α)/Γ(α) is the digamma function. No
closed-form solution α of (5) exists, but the function is well-
behaved and can be easily calculated numerically.

As seen in (5) and (6) a minimum sufficient statistic for
the Gamma parameters α and β is given by

∑t
i=1 δi and∑t

i=1 log δi [9]; i.e., we must not store all individual latency
observations throughout the life of a campaign. It is sufficient
to keep track of the most up-to-date values of these two
sums. These sums represent the state variables of the latency
estimator, and the solution of (5) and (6) is calculated in each
iteration of the control system based on all available latency
observations, producing α̂ and β̂.

B. Conversion Rate Estimation

We assume that p(k) in (2) is constant and that there
is no latency for reporting conversions, then the following
estimator provides the minimum variance estimate for p(k).

p̂(k) =

∑`=k−1
`=0 nA(`)∑`=k−1
`=0 nI(`)

(7)

In reality, at time k, we only have nA(`, k), which might
be an immature measurement of nA(`). If we simply replace
nA(`) with nA(`, k) in (7), p(k) is under-estimated. To
better leverage immature data, the conversion rate estimation
should take into account of the latency estimates derived
from (5) and (6). One candidate algorithm is

p̂(k) =

∑`=k−1
`=0 nA(`, k)∑`=k−1

`=0 nI(`)
∫ k
`
f(τ |α̂, β̂)dτ

(8)

in which impression measurements are discounted based on
the estimated latency model.

To deal with the fact that p(k) may slowly change with
time, the above algorithm can be further updated with
forgetting factors or other robust modifications. Due to space
limit, we do not discuss the algorithm for estimating time-
of-day pattern in p(k).



C. Conversion Volume Estimation

To smoothly pace a CPA campaign, we estimate the
conversion volumes for the past runs. Below is one example
solution for estimating nA(`) at time k:

n̂A(`) = nA(`, k) + p̂(k)nI(`)

∫ ∞
k−`

f(τ |α̂, β̂)dτ (9)

We have assumed the true conversion rate is either con-
stant or slowly varying over time. Therefore, p̂(k) always
represents the best knowledge for the conversion rate for
any time before k.

D. Smoothness Controller

If we have perfect knowledge about the conversion rate,
then the estimated delivery in conversions in (9) can be used
as the feedback signal. The following feedback control law
meets the control objective in the noise free scenario:

u(k) = u(k − 1) + γI

[
ndaily,refA −

`=k−1∑
`=k−24

(
nA(`, k)+

p̂(k)nI(`)

∫ ∞
k−`

f(τ |α̂, β̂)dτ

)]
(10)

where γI is a design parameter. Control law (10) is a simple
I-type controller with 24-hour-moving-average filter. It is a
stabilizing controller as long as p̂(k) is stable and γI is
small enough. For improved performance, one may look
into linear-time-varying or non-linear control designs [11],
[12]. The complete algorithm for updating feedback signal
is described by (5), (6), (8) and (10).

VII. EXPERIMENTAL RESULTS

We conclude this tutorial on applications of estimation and
control in online advertising with experiment on one repre-
sentative CPA campaign. Figure 7 shows the pacing of this
campaign for 3 weeks, managed by a controller similar to but
more complicated than the algorithm presented in Section VI.
In the top two plots we see that the estimated latency mean
is between 14 and 18 hours and that the estimated latency
standard deviation is between 9 and 11 hours. The variability
may be the results of noisy measurement and/or a change in
the underlying true but unknown latency distribution.

The estimated conversion probability is displayed in the
middle left plot. Notice how the conversion probability varies
between 0.1 and 0.2 % during most of the time interval.
The drop in observed sourced conversion probability on
September 23/24 is the result of the latency which means that
most conversions sourced to impressions during those days
have not yet occurred. The estimated conversion probability
is doing a better job by accounting for future conversions.

The successive increase in control signal throughout the
first two weeks of September, shown in the middle right plot,
is an indication of an increasingly competitive environment.
Most likely there were other campaigns entering the market
place bidding for the same impressions. The bottom left
plot shows the hourly and daily number of impressions

Fig. 7. Example of CPA campaign managed by the controller developed
in Section VI. Top: estimated latency mean and standard deviation. Middle
left: observed sourced and estimated conversion probability. Middle right:
Control signal. Bottom left: hourly and daily awarded impression volume.
Bottom right: daily budget delivery and reference signal.

awarded to the campaign and the bottom right plot shows
the daily delivery of the advertising budget. The distinct day
of week pattern follows the usual user activity online and
advertisers in general do prefer that their campaigns follow
the same pattern (similar to how the campaign also show
a distinct time of day pattern). This last plot also shows
a (mostly) horizontal thick reference line and two thinner
lines indicating a ±20% delivery acceptance band. The blue
bars on September 21-24 indicate days with an immature
conversion report, due to long latency.
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